- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Lazzi, Gianluca (3)
-
Loizos, Kyle (3)
-
Paknahad, Javad (3)
-
Anderson, James R. (1)
-
Humayun, Mark (1)
-
Humayun, Mark S. (1)
-
Iseri, Ege (1)
-
Jones, Bryan W. (1)
-
Kosta, Pragya (1)
-
Pfeiffer, Rebecca L. (1)
-
Sigulinsky, Crystal L. (1)
-
Yue, Lan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Epiretinal prostheses aim at electrically stimulating the inner most surviving retinal cells—retinal ganglion cells (RGCs)—to restore partial sight to the blind. Recent tests in patients with epiretinal implants have revealed that electrical stimulation of the retina results in the percept of color of the elicited phosphenes, which depends on the frequency of stimulation. This paper presents computational results that are predictive of this finding and further support our understanding of the mechanisms of color encoding in electrical stimulation of retina, which could prove pivotal for the design of advanced retinal prosthetics that elicit both percept and color. This provides, for the first time, a directly applicable “amplitude-frequency” stimulation strategy to “encode color” in future retinal prosthetics through a predictive computational tool to selectively target small bistratified cells, which have been shown to contribute to “blue-yellow” color opponency in the retinal circuitry. The presented results are validated with experimental data reported in the literature and correlated with findings in blind patients with a retinal prosthetic implant collected by our group.more » « less
-
Paknahad, Javad; Loizos, Kyle; Humayun, Mark; Lazzi, Gianluca (, Annu Int Conf IEEE Eng Med Biol Soc.)null (Ed.)Electrical stimulation of surviving retinal neurons has proven effective in restoring sight to totally blind patients affected by retinal degenerative diseases. Morphological and biophysical differences among retinal ganglion cells (RGCs) are important factors affecting their response to epiretinal electrical stimulation. Although detailed models of ON and OFF RGCs have already been investigated, here we developed morphologically and biophysically realistic computational models of two classified RGCs, D1-bistratified and A2-monostratified, and analyzed their response to alternations in stimulation frequency (up to 200 Hz). Results show that the D1-bistratified cell is more responsive to high frequency stimulation compared to the A2-monostratified cell. This differential RGCs response suggests a potential avenue for selective activation, and in turn different encoded percept of RGCsmore » « less
-
Kosta, Pragya; Iseri, Ege; Loizos, Kyle; Paknahad, Javad; Pfeiffer, Rebecca L.; Sigulinsky, Crystal L.; Anderson, James R.; Jones, Bryan W.; Lazzi, Gianluca (, Experimental Eye Research)null (Ed.)
An official website of the United States government
